騒音の尺度

騒音(音)とは、空気中を伝わるエネルギーです。

基準音圧エネルギーと相対的な音圧エネルギーの対数(Log:ログ)をとり、これを10倍してデシベル(dB)という単位でその大きさを表します。

以下のような特徴があります。

騒音レベルの和

A デシベルの音の発生源と B デシベルの音の発生源があるときの騒音レベルの和 $C = 1.0 \text{ Log} (1.0^{A/1.0} + 1.0^{B/1.0})$

例)60 デシベルの空気圧縮機と50 デシベルの空気圧縮機があるとき、騒音レベルの和 $10 \text{Log} (10^{60/10} + 10^{50/10}) = 60.4$ デシベル

音のエネルギー(騒音レベル)	加算されるレベル
2 倍(騒音レベルが同じ発生源が2台)	約 + 3 デシベル
3倍(騒音レベルが同じ発生源が3台)	約 + 5 デシベル
10倍(騒音レベルが同じ発生源が10台)	約 +10デシベル
100倍(騒音レベルが同じ発生源が100台)	約 +20デシベル

例1)60デシベルのチッパーが2台あるときの騒音レベルの和

___ 6 3 デシベル

例2) 70 デシベルの液圧プレスが10台あるときの騒音レベルの和 80 デシベル

騒音の大きさの例

騒音レベル	音の例示	騒音レベル	音の例示
30 デシベル	郊外の深夜のささやき声	80 デシベル	地下鉄・電車の車内
40 デシベル	市内の深夜、図書館	90 デシベル	大声による独唱、騒々しい工場の中
50 デシベル	静かな事務所	100 デシベル	電車が通るときのガード下
60 デシベル	静かな乗用車、普通の会話	110 デシベル	自動車の警笛
70 デシベル	電話のベル、騒々しい事務所の中	120 デシベル	飛行機のエンジンの近く

騒音レベルの距離減衰(点音源の場合)

発生源から離れると騒音レベルは小さくなります。(距離減衰)

発生源を点音源と見なせる場合、発生源から r_1 メートル離れた位置での騒音レベルが L_1 デシベルのとき、発生源から r_2 メートル離れた地点における騒音レベル L_2 は、以下の式で求められます。

$$L_2 = L_1 - 20 Log_{10} (r_2/r_1)$$

例)空気圧縮機から 1 m離れた地点での音圧レベルが 9 0 デシベルのとき、 3 0 m離れた事業場敷地境界での音圧レベルは何デシベルか。

90-20log(30/1) = 90-29.5 = 60.5 デシベル